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Current D062 safety levels computations utilize the Laplace

Distribution to approximate the distribution of demand in a lead
time. This paper presen';ts several plots which compare the Laplace
distribution with an empirical model of D062 demand in a lead
time. Section I provides additional background for the paper,
while Section II presents a detailed comparison of several spe-

cific lead time demand models.

Background

Safety level computations utilized in the Economic Order
Quantity (BOQ) Buy Computation System (D062) are based on formu-
las originally developed by Presutti and Trepp (1970). These
authors consider the problem of determining order quantities
and reorder points for each item in a single-echelon, multi-item,
continuous review inventory svstem so as to minimize total system
holding and shortage costs. In addition, they assume there is
a constraint on either total units back ordered or on the average

number of units in a back order position. Presutti and Trepp
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i fornulas as the PT-Formulas.
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Subsequent simulation studies using actual demand history

= for Air Force items showed the PT-formulas were significantly :

more cost effective than the inventory level computations then {

in use; that is, the PT-formulas provided lower levels of back-

Do orders for a given investment in inventory than the previous
formulas, or conversely, a given back order level could be achieved

with the PT-formulas with a smaller investment in.safety stocks.

i

As a result of these studies, the Air Force, the Defense Supply
Agency, and the US Army (for high demand items) adopted the PT-

formulas for the management of EOQ-type items.

J Three of the major assumptions which are embedded in the
| Air Force D062 implementation of the PT-formulas are the following:

1. Demand in a lead time is normally distributed.

PR LY RS

2. The lead time is known and constant.

3. The mean and standard deviation of lead time demand

may be accurately estimated from available history.




The above assumptions are commonly employed in many commercisl
inventory systems, and, as noted above, simulation studies have
shown the resulting formulas are significantly more cost effec-
tive for the control of Air Force BOQ inventories_th&n the p.e-
viously used formulas. However, several recent studies have
indicated that the above assumptions may be a poor approximation

to the actual characterics of many Air Force BOQ items. In partic-
ular, in Reference 2 it is observed that the distribution of
forecast errors appears better described by a nonsymmetrical
exponential distribution than by the normal distribution. 1In
Reference 4, Hayya observes that the replenishment lead time

for many D062 items appears to be highly variable, and that the
limited amount of data on procurement lead'tines makes accurate

estimations of lead time parameters difficult.

As a result of these findings, we have used historical D062
data to develop a refined model for the distribution of demand
in a lead time. In this paper, we provide comparisons of this
empirically derived model with the Laplace distribution. First,

however, let us consider each of these formulas in more detail.

The Laplace Distribution

x = number of units observed during a procurement lead time




! u = the expected demand in a lead time.

vy @ = the standard deviation of demand in a lead time.
t = the lead time in months.

L With the above definitions, the probability density function

NP e 3 BT bty

£(x) for the Laplace distribution is given by

(1) £(x) = 1 _exp ( -/Zlxl)
VZ o

; ; where
(2) k= (x-u) /o

i.e. k denotes the number of standard deviations that the demand
value x exceeds the expected demand in a lead time. Given (1),
Presutti and Trepp show that the probability that the demands
actually observed in a procurement lead time (X) is less than

or equal to a specific numerical value x is given by

A Y T Y S

= P-SGXP(ﬂ'k) for X £ 0
f (3) P(X € x) = 4
| 1. - .Sexp ( - V7 'k ) for k > 0

b




In establishing cost effective safety stocks, the cumulative
distribution function P(X € x ) is particularly important. A
common approach for establishing safety stocks is to consider
the trade-off between holding costs and shortages to determine
i an optimum £i1l1 probability P*. The cumulative distribution
function P(X ¢ x) is then used to determine the specific value
of x that corresponds to this optimum fill probability.

As noted above, an important assumption embedded in the D062
safety level computation is that the parameters u and ¢ of the

lead time distribution may be accurately estimated from available

data. Since demand in a lead time is not directly observed in
the D062 system, these parameters must be estimated from other

data. At present, the following estimation equations are used.

PW,

First, let R denote the average quérterly demand rate observed

f over the past eight quarters, and let QMAD denote the Mean Abso-
- lute Deviation (MAD) associated with this quarterly demand rate
estimate. Then the parameters u, 6 of the lead time demand distri-

bution are estimated as follows:

| U = Ret
& (8)
; & = 0.5945 & QMAD* ( 0.8235 + 0.42625 * t)

Where "#" denotes multiplication. The first equation is derived

from the fact that the expécted demand in a lead time of t periods
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is equal to t times the expected demands in a single period.
The standard deviation estimate & is based on an approximation
suggested by Brown (1967). This approximation accounts for
the fact that demand rate estimates are based upon averages of

random variables and are thus correlated from period to period.

An Bmpirical Model of Forecast Errors in 8 Given Time

Reference 2 presents the results of statistical studies to
identify the actual distribution of forecasting errors associated
with current D067 forecasting methods. . In this reference, actual
CY71-79 D062 demand histories for Sacramento and Oklahoma City

Air Logistics Centers are used to (a) forecast demands in a given

lead time using current D062 forec;st rules, and (b) to compute

the distribution of forecast errors associated with these fore-
casts. Analytical approximations to the empirical data are then
developed. As a result, it was found that for items with demand
rates of three units per quarter or more, tae cumulative distri-
bution function for demand in a fixed lead time of t periods

may be approximated by

0.669 exp ( 0.7979 z) for z €.0
(5) P(x ¢ x| t)e
1. - 0.331 exp ( - 0.463 z) for z » 0
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(6) z=(x-Rt ) (QMAD VT )

This model appears to be a particulafly good fit to the actual

distribution of forecast errors for positive values of z.

A Bapirical Model with Gamma Lead Times

Bquation (5) describes a useful model for the distribution
of demand in a fixed lead time of t periods. If lead time is

random and independent of demands per period, the unconditional

distribution of demand in a lead time may be found by averaging

the conditional distribution (S) with the probability distribu-
tion for lead time. Specifically, let g(t) denote the probébil-
ity density function of lead time. Then it may be shown that

unconditional distribution of demand in a lead time is given

by

- 00

(7) P(X =x) = j P(X ¢ xlt ) g(t) dt
0

In Reference 4, Hayya describes statistical studies to iden-
tify an appropriate model for the distribution of lead times
for D062 items. He observes that several probability distribu-
tions, including the nornél, gamma, exponential, Weibull and
log normal, are consistent with the available 1ead time data

for a number of D062 items. In reviewing Hayya's results, the




Gamma distribution, in particular, appears to be a useful descrip-
tion of lead time for the purposes of this study. Specifically,

if lead times are gamma distribited, we have

(8) g(t) = 1 ta-1 exp ( -t /b))
Y(a) v®

where a and b are parameters of the distribution. The expected

value and variance of the Gamma distribution are given by

(9) E(t) =a b

(10) Var(t) = a b2 = b E(t)

Hence, one method of establishing the parameters for a Gamma
distribution is to estimate the mean and variance of lead time
from historical data, and then use (9) to solve for the specific

(a,b) values which yield the desired moments.

A second estimation procedure is based upon the fact that
the coefficient of variation ¢ for the Gamma distribution is

given by




(11) c = /var(t) ~ ZEEI -
ab

B(t)

31

Hence,

(12) a = 1_

~

Once a is known, parameter b may be obtained using (9){ Specifically,

(13) b = E(t)/a

Thus, to obtain (a,b) estimates we may estimate the coefficient
of variation c and the expected lead time E(t), and then use
these values in (12) and (13) to obtain (a,b) estimates. 1In

the calculations reported in Section II, we have used this second

approach.

Estimates for a Specific Lead Time Distribution

In Reference 4, Appendix C, Hayya presents estimates of the
mean and coefficient of variation associated with historical
lead time data for 62 EOQ items. Table I-1 presents a summary
of the coefficients of variation observed by Hayya. Observe
that these values range from .05 to 1.07, with a median value
of .36. If we set c = .36, then (12) yields the estimate a =

7.7. However, evaluation of (8) is significantly simplified

if a is integer, for then the Gamma function T(a) = (a-1)!




"

For a=7, c=1 / /7 =.378, while a=8 gives c=1 / /¥ = .3523. Hence,
a Gamma distribution with a=8 has a coefficient of variation

similar to the median c value observed by Hayya. Now suppose

we normalize our time scale so that E(t) = 1. Hence, using a

= 8 in (13) yields b = 1/8 =,125. Finally, substituting these

values in (8), we obtain

(14) g(e) = 1 exp ( -8t )
Y(s) (1/8)®

= 8 (8t) exp( -8t)
71

which yields
(15) g(t) = .0015873 (8t)7 exp( -8t)

We have used this equation for the distribution of lead times
in the computer code presented in the Appendix. Finally, suppose
we wish to estimate the unconditional di;tribution of demand
in a lead time using the P( X € x | t) distribution defined by
(S), (6) and the lead time distribution (15). From (7), |

x/R
(16) P(X€x) = j[o.e.eg exp ( .7979 z )]g(t) dt
(]

.q0
«j [ 1. - 0.331 exp( - 0.463 z J] g(t) dt
' x/R

where z = (x-Rt)/(QMAD y/T ).




We have used numeric integration to evaluate (16) using a

f - step size of dt = .1. Our computer code is presented in the
Appendix. Subroutine EXPLTD (X,R, QMAD, QTRLT, CUMPX) computes
| the cumulative probability CUMPX = P( X € x) for given values

of X, R, QMAD, and QTRLT, where QTRLT denotes the expected lead
time in months, and the other terms are as defined above. The
MAIN program presented in the Appendix uses subroutine EXPLTD to
compute the unconditional distribution of P( X € x) for selected
values of x and to compute and print associated Laplace distri-
bution values. In the next section, we present the results of

{ these calculations.
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Section II . 4

Sensitivity Analysis

To compare the cumulative distribution functions (CDF) asso-
ciated with the Laplace and the empirically-derived model of
demand in a leadtime, we developed the computer code shown in '
Appendix A. We then used this code to evaluate these distribu- f

’ tions for a number of parameter sets. Table II-1 illustrates
our results for a hypothical item with a demand rate R=300 units
‘ ' per quarter, a demand coefficient of variation of .2, and an
3% ) average leadtime of 9 months. In the table, X denotes the speci-
; fic number of units of demand in a given lead time, while the
5 column labeled "EXPGAM" shows the CDF of the empirically derived
; exponential-gamma model. That is, this column presents the cumu-
lative distribution function for demand in a lead time using
the exponential model for forecast errors in given lead time
and also assuming that lead times are independent of demand and i
i f gamma distributed a coefficient of variation of .353. For exam- ;
‘ ple, comparing these two columns, we see that there is an 80%
chance that demand in a relenishment leadtime will be less than
or equal to 1330 units, and a 90.9% chance that demand in the

leadtime will be less than or equal to 1800 units,

The columns labeled "CONLT" and "LAPLACE" represent alternate z
cumulative distribution functions. The column labeled "CONLT" |
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Table II-1

s e

Cumulative Probabilities
for

Three Distributions of Lead Time Demand

o o ame oA e

R 200.00 gV = 0,20 LFAD TIRE MONTHS = 9.00

; X  EXPGAW  COMLT LAPLACE EDELT  EXPG-LAPL
j 0.  0.0004 C.0000 0.0000 O 0.0003
P 115.0  0.0019  0.0004 0.0001 0.1278  0.001?

2.0 0.0093 0.0011  0.0004 0.2556  0.0089

MNS.0 0.0359  0,0035 0.0014 0.3833  0.0343

' 480.0 06,0972 0.0098  0.0046  O0.5i11  0.0926
$75.0  0.1930  0.0296  0.0:158  0.6389 0.2

£90.0 0.3165 0.0882 0,053  0.7867  0.2650

! §05.0 0.4533  0.2688 0.1820 0.9944  0.2772
§20.06 05885  0.7039  0.5959  1.0222 -0.0082

i o 1035.0  0.6962  0.8439  0.88:0  1.1500 -0.1848
1150.0  A.7852  0.9177  0.9%50  1.2778  ~-0.1788

1265.¢ 0.9%8  0,9565  0.9887  1.2058 -0.1348

1200.0  05.9020  0.977i  0.9970 1,533 -0.0950
1483.0 0.93%  ©0.3880  5.,899f  1.6Bl1 -5.0B%7
1610.0  0.3%Re  9.8337 59637  (.7E39  -0.0414
{328.0  4,0733 [, 0GR  A.8000 . 967 -0.)26%

R USSP O R« < xS I S L

1855.0  £.7831  .9981 1.0000  2,i722 -0.0i08
. 070.¢6 0,383 0,383F (0000 2.30Ch -0, NORS

Where X = demand in the leadtime (units)
3 EXPGAM = Exponential-Gamma Model
CONLT = Exponential-Constant Model
- LAPLACE = Laplace Model

EDELT = Standardized lead time demand

(Observed lead time demand X)

(Expected demand rate) (Expected Leadtime)
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is the cumulative distribution function for demand in a fixed
lead time (i.e., there is no variability in replenishment lead-
time), using the exponential approximation to the distribution

of forecast errors. On the other hand, the "Laplace" column

represents the corresponding cumulative probabilities predicted
by the LAPLACE distribution . The column labeled "EDELP" is

a normalized measure for demand in a leadtime. This column is
obtained by dividing the number of units X demanded in a leadtime
by the expected number of units demanded in the expected lead-
time. In this case, since the demand rate is 300 units per quar-
ter and the leadtime is 9 months, the expected demand in the
expected leadtime is 900 units. Consequently, the "EDELT" column i
was obtained by dividing X by 900. Finally, the column labeled

"EXPG-LAPL" presents the difference between the culmulative dis-

tribution functions for the EXPGAM and LAPLACE models.

nar Pcrr bt s s e
-—

ey

IS

Figure II-1 presents a plot of the cumulative distribution

functions in Table II-1. In the figure, the solid line repre-

TPDRh o7 - ~wrarvedm

sents the Laplace cumulative distribution function, while the
dashed lines present the constant leadtime and exponential-gamma
models, respectively., The normalized leadtime demand value EDELT
is used for the X-axis in this plot. As shown in the figure,
there are significant differences between the Laplace and Expo-
nential-Gamma models. For example, if one wishes to achieve

a 90 percent fill rate, the EXPGAM model indicates that the safety
stock should be set to 1.53 times EDELT, the expected demand

in the expected leadtime, or 1380 units. On the other hand,
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II-5

the Laplace model indicates that the 90% fill rate may be achieved
with a safety stock of about 1.2 times BDBLT, or 1080 units.

On the other hand, the two curves cross at approximately the
BDELT=1 value, and the cumulative distribution functions of all

three functions are very similar in this region.

Figure I1-2 presents s plot of the three distributions for
a case in which demand per quarter is 300 units and leadtime
is 9 months, but the coefficient of variation of demand per quar-
ter has been increased to .5. Notice that the three curves are
closer in this case, but that there are still substantial differ-
ences among the curves. Figure II-3 presents a similar plot
when the coefficient of variation of demand per quarter is .8.
The curves are now even more similar than for the .5 case, but
significant differences among the curves still exist, particu-

larly in the 80% and above fill rate region.

To obtain further insights into the relative behavior of
these three curves, we ploted a number of other combinations
of parameters. In our first sensitivity study, we were inter-
ested in the effects of changes in item demand rate and demand
variability upon the overall shapes of the curves. Our results
are presented in Figures II-1 through I1I-12, while the specific
parameter sets investigated are shown in Table 1I-2. As shown
in the Table, we developed.curves for demand rates of 300, 30,
3, and .3 units per quarter, respectivily, and for coefficients

of variation of demand per quarter of .2, .5, and .8. In all

1.
R
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l ?h - Table II-2

Parameter Sets for Demand Rate and Demand Variability Sensitivity Tests

Coefficient of Average
Demand Variation of Replenishment
Figure ©per Qtr Demand per Qtr Leadtime (Months)

P II-1 300 .2 9
! 1I-2 " .5 9
II-3 " .8 9
v I1-4 30 .2 9
: II-5§ " .5 9
II-6 " .8 9
11-7 3 .2 9
II-8 " .5 9

Il'g " 08 9 ;
I1-10 .3 .2 9
II-11 " .5 9
11-12 " .8 9
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of these cases, we assumed that replenishment leadtime was gamma \’
distributed with a coefficient of variation of .353 and an aver-

age leadtime value of 9 months.

As may be seen in Figures II-4 through II-12, as the coef-
ficient of variation of demand per quarter increases, differences
among the three leadtime demand curves diminish. The greatest
differences among the curves occur at low values of the coeffi-

, cient variation, and the differences decrease as the coefficient
i of variation increases. However, even for coefficient of varia-
tion values of .8, significant differences among the curves exist

l for £ill rates in the 80% or higher range.

Sensitivity to Average Replenishment Leadtime

We also developed a number of plots to investigate the sensi-
! tivity of the three leadtime demand curves to changes in the
average replenishment leadtime. Table I1-3 summarizes the para-
meters sets used while Figures I1-13 through II-24 present our
results. In this case, we investigated average replenishment
| leadtimes of 6, 9, and 12 months, while demand per quarter was
set to 300, 30, 3 and .3 units per quarter, repectively. In
all of these calculations, the coefficient of variation of demand

per quarter was sent to .5 while the coefficent of variation

of replenishment leadtime was set to .353.




Table II-3
Parameter Sets for Replenishment Leadtime Sensitivity Tests

Coefficient of Average
Demand Variation of - Replenishment
Figure per Qtr Demand per Qtr Leadtime (Months)

IT-I3 300 .S 6
11-14 ” " 9
I1-1§ " " 12

II-16 30 .5 6
11-17 " " 9
I1-18 " " 12

I1-19 3 .5 6
11-20 " " 9
I1-21 " "o 12

11-22 3 - .5 6
11-23 " " 9
11-24 " " 12

Figures II-13 through II-24 present relationships among the
curves which are very similar to those observed in Figures II-

1 thru II-12. As the leadtime increases, slight changes in the

|
!
i
]
1
i
1
f
-
|
|

curves take place, but these are hard to observe in the graphs.
In all cases, significant differences exist among the curves

in the 80+% f£fill rate ranges.
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Appendix A

Programs for Laplace

and

Bmpirical Approximation Calculations




104EXPLTD.S-~CONPUTE P(Xs< x) FOR EXP. APPROX. AND GANMA LEADTINME
20

34C ASSUNE 1 PERIOD = EXIPECTED LEADTINE

40 LEADTINE HAS NEMN = 1,

Sec COEFFICIENT OF VARIATION = 353
40C

7% R = EXPECTED DENAND IN LEADTINE

8eC $16 = STANDARD DEVIATION OF DEMAND IN EXPECTED LEADTINE
9eC RHAD = NAD OF DENAND IN EXPECTED LEADTINE
100C

110C CUNPT=CUN. PROB OF LEADTIME DISTRIBUIJION
120C CUNPX= CUN. PROB OF DERAND X IN LEADTINE
130C

140C DT = TINE DELTA

130C 6T = P (LEADTINE = 1)

14600 IT = STANDARDIZED ERROR

170C

180 COMNON/IUT/INT(20)

190C

200C SET1 PRINT FLAGS

210C

22¢ INTO10)sIDETL

230 INT(11)=IPNTST
240 CALL FPARAN(1,132)
250C

260  PRINT,"QUTPUT 10 FILE 08 (0=N01" i
220 READ, 10UT

200¢

290¢C

300C

3n PRINT,"PRINT DETAILS 7 DETAIL STEP SIZE?"
320 READ , IDETL,IPNTSZ

330 IFUIPNTSZ.LT.1) IPNTS221000

340C

342 S5 CONTINUE

3350C SET PRINT FLAGS
340C

320 I8T(10)=IBETL

380 INT(11)sIPNTS2

390 PRINT,"NEAN AND COFV BF DEMAND PEK OTR, AND LT IN MONTHS"
490 READ,R,COFV, RLTY

403 RNAD = 0.8eCOFV=>R

410 PRINT 23,R,COFV, RL1T

420 23 FORMAT(//°R =°,F8.2," COFV =" ,F8.2,

4308 " LEAD TINE WONTNS =°,F8.2///)
440C

450 IFCIDETL.ET.0)

4408 PRINT, " X ] 1 FX{ H], Lunexe.
4703 . 31 Pz”




: 4%0C
500¢ COMPUTE LEADTINE IN QUARTERS
S0 ESTINATE RAD
S20C
S30C

S4¢ OTRLT=RLT/3.
330 TQTR=QTRLY
333 ENLT sTATR»R

334C

364C EVALBATE P( X (= x ) FOR X =0 TO MEAN ¢ JI»RMAD
S370C

580 INAX=RsQTRLT+3. sRUADSSART(OTRLT)

Sv0C

600 DX = INAX/14.
610 IFOOX.LY. t.) BX =1,
620 IF(DX.8T. 1.) DX =sIFIK(DX + 0.3)

630C
640C
650¢ INITIALIZE VARIABLES
640C
670C
480C CONPUTE CUNPX=P (X<=X)
i 690C
i P000—---—c—-mememmcmamcemammceme—eem e
! 710¢ BEGIN °X" EVALUATION LOOP
720C-~==-=sroocceccemcceactmmammemamamcmanes
730 PRINT,® X EXPGAN CONLT  LAPLACE EDELT®
‘ 7158 ,~  EXPG-LAPL™
| 740 PRINT,” ™
n 7350¢
y 260 X20.
1 770 DO 200 IX=1,100
¥ | 780C
! 790  CALL EXPLTD(X,R,RNAD,QTRLT,CUMPX)
! 800¢
! 810¢ COMPUTE FIXED LEADTIME PROBABILITY
820¢
! 830 1= (X-R+TQTR)/(RMADSSORT (TQTR) )
1 840 IF(2.LE.O)CPFLT=.449%EXP(0.7279¢2)
; 850 1F(2.67.0.)CFFLT=1 .~ 3314EXF(-.443¢2)
. 840C
) 870C CONFUTE LAPLACE PROBABTLITY
880¢c |
885 $162.59450RNAD (. 8235+0.42625+RLT) U]
890 RX=(X-R¢TQTR)/( SIG) :
, 900 IFCRK.LE.0.)CPLPC=. S#EXP (1, 41424RK)
o 910 IF(RK.GT.0.)CPLPC=1, - . S#EXP (-1, 4147 2RK)
920¢ {
930C PRINT RESULTS i
940¢C
942 X0 s X/EOLT
2 945 DIFF=CUNPY~CPLPC
- 950 PRINT 123,X,CUNFX,CPFLT,CPLPC, XN, DTFF
] 9460 123 FORMAT(F12,1,5F10.4)




2414
980
9%
19000
1010C
1020¢
1030¢
1840C
1030
1060
1070C
1080C

LINEsLINE ¢ 1

IFCI0VT .GT.0)URITE(S,133)LINE,X,CUNPX,CPFLT,CPLPC, XN
133 FORNAT(IS,F8.1,4F10.4)

INCRENENT X AND CNECKX IF DONE

I=X+DX
IF (CUMPX.ET. 9.99) 6O TO 340

----------- END OF “X° LOSP

1100 200 CONTINSE

1M

1120 300 CONTINUE

"N
1122
1123C
1130C
1140
1143
1150
1160
1170
1180
1190
1200C
1210
1220C
12300
1240C
1250
1260
1270
1280
1296C
1300C
1310C
1320
1330
1340C
1356
1360
1370C
1390¢
1390
1400C
1410C

LINE = LINE+1

IF{IOUT.6T.0) URITE(8,133)L1NE,0.,0.,0.,0.,0.

WRITE(4,423)

423 FORNAT(/////"CONTINUE * (1=YES)"/)

READ, ICONT

IFCICONT.NE. 1) STOF

60 T0 S

END -
SUBDROUTINE EXPLTD(X,R,GNAD,QTRLT,CUNPY)

CONMON/TUT/INT(20)
SET URITE FLAGS
IDETL = TUT(10)
IPNTS? = IUTUID)Y
CUNPT=0,
CunPx=0.
INITIALIZE PDF PARAMETERS

M= .33
Bt = -0.463

2= 0.549
§2= 0.797¢

GARMA CONSTANT FOK MEAN=1 AND LV=.3518
Ci= 0.0015873




14200 emmccemem e e mme e
1430C

1440C

1450C INITIALIZE FOR T INTEGRATION
1460C

1470 DT = .1

1480 107

1490 CUNPT=0,

1500 CUNPX=0.

1510¢

1520¢ DEGIN *T* INTEGRATION LOOP
1330C

1540 30 100 1=1,100

13550C

15400 CONPUTE STANDARDIZED ERRSR ZT
1570C

1580 TATR= TeQIRLT

1590 1T = (X - R*TQTR)/ (QNADSSGRT(TQIR) )
1400C

16100 COMPUTE p( T)

1420C

14630 6T = Cix(B.eT)%e?e EXP(=-0.0T) o PT
1440C :

1450C COMPUTE P(2 <= 21 ¢ T)

1460C

1670 IF( IT.LE.0.) P sA2+EXP(R241T)
1480 IFC 21.61.0.) PZ= 1. - A1eEXP( MI*IT)
1490C

1700C COMPUTE P( X <2 x !T) PC D)
17100

1720 PIT = PZeGT

1730¢

1740C UPDATE CUNULATIVE PROBARILITIES
1750C

1760 CUNPT = CUNPT + GT

1770 CUNPX = CUNPX ¢ PXT

1780C .

1790 IPRNT=¢

1800 IF (MOD(I,IPNTSZ).EQ.0) IPRNT=1

1910 IF(IDETL.LE.O) IPRNT=0

1820 IFCIPRNT.GT.0) WRITE(4,483) X,1,61,PXT,CUNPT,CUMPX,ZT,P2
1830 63 FORNAT(2F8.2,6F10.4)

1040C

1850¢

1860C INCREMENT 1

1870¢C

1880 T s 1407

16890C

1900C STOP IF CUNPT > 999

1910C .

1920 IF (CUMPT.ET. 0.999) GO 10 120

1930C

1940C-~mmemmmemamen END OF 1" ) OOP=--~-v---
1950 100 CONTINUE

1940¢

1970 120 CONTIMUE

1980
1990

RE TURN EXPLTD
({,]]




